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Abstract. Two of the most representative deep architectures are Deep
Convolutional Neural Networks and Deep Belief Networks (DBNs). Both
of these can be applied to the problem of pattern classification. Never-
theless, they differ in the training method: while the first is trained by
backpropagation of the error through the whole network, the latter is
typically pre-trained on a per-layer basis using an unsupervised algorithm
known as Contrastive Divergence (CD), and then it is fine-tuned with
a gradient descent algorithm. Although metaheuristic algorithms have
been widely applied for hyperparameter tuning, little has been published
regarding alternative methods to pre-train DBNs. In this work, we sub-
stitute the conventional pre-training method with an evolutionary opti-
mization algorithm called the Covariance Matrix Adaptation Evolution-
ary Strategy (CMA-ES). The pretraining is achieved by minimizing the
so-called reconstruction error. This proposal is validated on the problem
of MNIST digit recognition by training a Deep Belief Network, following
the methodology described by Hinton and Salakhutdinov (Science, 2006).
It is also compared against the well known Genetic Algorithm (GA).
We provide evidence to show that, although the computational cost is
significantly highern than CD, the use of CMA-ES leads to a significantly
smaller reconstruction error than CD and the GA.

Keywords. Deep learning, deep belief networks, deep autoencoders,
metaheuristics, evolutionary algorithms.

1 Introduction

Pattern recognition can be defined as the classification of the data based on the
acquired knowledge or statistical information extracted from patterns and its
representations [15]. Traditional classifiation methods, such as K-means, Support
Vector Machine (SVM), Artificial Neural Networks (ANNs) and linear methods,
require the knowledge, contained in a dataset, to be provided to them as features.
Therefore, a fundamental step in pattern classification is the selection (and
extraction) of features or attributes that best represent the dataset, known as
patterns. Typically, an expert does this selection [2]. However, in recent years

115

ISSN 1870-4069

Research in Computing Science 148(3), 2019pp. 115–131; rec. 2018-10-10; acc. 2018-10-20



these experts have been substituted by Deep Neural Networks (DNNs) that are
capable of computing and selecting those features during their training process
[10].

Despite the fact that deep learning techniques are effectively used as feature
learners, some issues arise regarding their training, for instance, since they
usually have complex architectures, they are more susceptible to overfitting than
simpler models. Depending on the model, they can easily contain hundreds of
thousands of parameters that must be calibrated or fine-tuned [22][23]. Fine-
tuning the parameters of a machine learning model can be posed as an opti-
mization task, in which the fitness function is the effectiveness of the technique
over some validating set, e. g., the best parameters in a DNN are those that
show the best classification result for a given problem.

Since about 2006, researchers have been attracted by Restricted Boltzmann
Machines (RBMs) due to their simplicity, high level of parallelism and strong
representation abilities [22]. RBMs can be interpreted as stochastic neural net-
works, being mainly used for image reconstruction, in which their hidden layer
learns a probability distribution over an input dataset presented to the vsible
layer [16]. Few years after their initial proposal, Hinton et al. realized that one
can obtain more complex representations by stacking together a few RBMs, thus
leading to the so-called Deep Belief Networks (DBNs) [22]. Recently, several
works have been published that focuse on tuning hyperparameters of DBNs
based on nature-inspired metaheuristics, such as Harmony Search [17], Cuckoo
Search [21], Artificial Bee Colony Algorithm [9], and Firefly Algorithm [22].
Last year, Papa et. al. [23] employed Quaternion-based Harmony Search to
tune hyperparameters of DBNs and evaluated some metaheuristic techniques
to tune the so called Infinity Discriminative Restricted Boltzmann Machines in
the context of binary images [18].

Besides nature-inspired metaheuristics, there are other types of metaheuris-
tics, such as Evolutionary Algorithms (EAs). The EAs can be classified into dif-
ferent families, for instance: Evolution Strategies (ESs) [5], Genetic Algorithms
[12] and Estimation of Distribution Algorithms (EDAs) [24]. ESs were introduced
by Rechenberg (1973) and further developed by Schwefel (1981); they are applied
to problems in continuous domains [13]. EDAs were introduced in the field of
evolutionary computation for the first time by MŰhlenbein and PaaB (1996). All
of these are population-based techniques. In general, EDAs possess the advantage
that they do not need extra parameters to perform the optimization; instead, a
new population is sampled from a probability distribution, which is estimated
from the problem database [13]. The Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) [5], uses a multivariate normal distribution to search for the
optimum. CMA-ES is an algorithm which, actually, shares characteristics of EAs
and EDAs.

Despite the satisfactory results that have been published of metaheuristics
used for the optimization of the hyperparameters of DBNs, no studies have been
found where the same metaheuristics are utilized for the optimization of the
weights of these networks. In this work, the use of the CMA-ES algorithm is
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proposed for such a task, in the context of training RBMs in an unsupervised
manner, which is known as pre-training these to be used in a latter phase of
a DBNs designed for classification. The technique is tested on the problem
of handwritten digit classification and compared against the typical training
procedure of RBMs.

The rest of this paper is organized as follows. Section 2 briefly presents all
the techniques that are involved in this work. Section 3 describes our proposal
and methodology. Section 4 reports our experimental results and finally, Section
5 offers our conclusions and directions for future work.

2 Materials and Methods

This section introduces all of the required technical background to understand
the experimental comparison presented in this work. First the Boltzmann ma-
chines and Deep Belief networks are introduced, then the training algorithm
known as Contrastive Divergence is briefly explained, and finally, the meta-
heuristics compared in this work are reviewed.

2.1 Boltzmann Machines and Deep Belief Nets

Boltzmann Machines are symmetrical, undirected bipartite graphical models [11]
containing neuron-like (typically binary) units that perform simple computa-
tions with which they are capable of learning internal representations. Their
name comes from their sampling distribution being the Boltzmann distribution,
popular in statistical mechanics for modelling energy states of a material.

The Boltzmann or Gibbs distribution is shown in Eq. (1). Notice that the
maximum (probability) of the Bolztmann is the minimum of f(x). Additionally,
the probability mass of x depends on the T value , if T is infinite, the Boltzmann
becomes a uniform distribution, on the other hand, if T goes to 0, the Boltzmann
becomes a Diract delta:

p(x) =
exp(−f(x)/kT )

Z
. (1)

These properties have been exploited by researchers in computer science,
by means of using the Boltzmann distribution for estimating the minimum of
an energy function f(x). Because such minimum is the most probable state,
it would be sampled with a high probability if an adequate T value is chosen.
Nevertheless, a direct sampling from the Bolztmann distribution requires dealing
with the whole range of f(x), which in turn is an exhaustive search. Fortunately,
there are indirect sampling methods whose samples converge to the Boltzmann
distribution, one of them is the Gibbs sampler, that takes advantage of neighbor-
hood structures of a graphical model to iteratively generate samples that asymp-
totically become distributed in agreement with the Boltzmann distribution. If
an arbitrary T value is chosen, the sampler could be biased towards a random
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Fig. 1. A Restricted Boltzmann Machine. The matrix W represents the weights
or connections between the computational binary units of different layers. These
connections are undirected.

suboptimal point. To avoid this problem, often a slowly decreasing sequence of
values for {T} is used. This technique is called a simulated annealing.

Because of this, the Boltzmann machines are also classified as “energy based
models” and can be seen as the stochastic, generative counterpart of Hop-
field networks. In theory, a Boltzmann machine could model the distribution
of data presented to it after running for long enough time at a certain energy
level. In practice, however, the training time required for the machine to learn
grows exponentially with the number of units in the network, and learning
becomes impractical. This disadvantage is overcome using an architecture called
a ”Restricted Boltzmann Machine” (RBM), where the computational units are
organized in layers called a visible (input) layer and a hidden layer, and intralayer
connections between the units forming the network are prohibited. Thus, in an
RBM there are only dependencies between units of different types (see Fig. 1).

Training of one RBM containing two layers (one visible, one hidden) is carried
out via a simple algorithm generally known as Contrastive Divergence [6], which
will be explained in detail in Section 2.1. Several RBMs can be stacked together
one after the other in a daisy-chain fashion, where the hidden layer of one RBM
becomes the visible layer of the next RBM. This strategy makes it possible
to efficiently train what are called Deep Autoencoders containing many layers
for dimensionality reduction and also, by adding a further supervised-learning
fine tuning training step, Deep Belief Networks (DBN), which can be used for
pattern recognition (e.g. in digital images and video). Each new layer added
to a DBN improves the overall generative model much like other models such
as multilayer perceptrons (MLPs) or convolutional neural networks (CNNs).
Training of a DBN can thus be studied by looking at the training of the stacked
RBMs contained within. The propagation function zi of hidden unit i is:
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zi =
∑
j

wijvj + bi, (2)

where wij is the symmetric weight on the connection between unit i and unit
j in the visible layer, vj can take the values 0 (the visible unit is OFF) or 1
(the visible unit is ON), and bi represents a bias added to each of the hidden
units. Based on zi, the hidden unit i will turn on with a probability given by the
logistic function in Eq. (3). Although not very common, other types of variables
can be used:

p(vi = 1) =
1

1 + e−zi
. (3)

The same pair of relationships, Eqs. 2 and 3 govern the behaviour of visible
units with respect to the hidden units, thus representing the probability that
a binary latent variable has a value of 1 during generation (top-down, from
hidden to visible units) or inference (bottom-up, from visible to hidden units).
If the units in alternating layers are thus sequentially updated, the network will
eventually reach a stationary distribution, which is a Boltzmann distribution
described in Eq. (4); notice that this is the same distribution as in Eq. (1)
for x = s, E(s) = f(x)/T , and Z =

∑
q e

−E(q), which is the normalization
constant. In that case, the probability of a state vector s, can be determined
solely by the energy of that state vector, normalized by the sum of the energies
of all possible binary state vectors q, called the partition function:

P (s) =
e−E(s)∑
q e

−E(q)
. (4)

A lower energy corresponds to a more desirable configuration of the network,
so that training the network means minimizing its energy, defined in Eq. (5):

E(s) = −
∑
i

vi(s)bi −
∑
i<j

wijvi(s)vj(s), (5)

where vi(s) represents the binary state assigned to unit i by s. In the next
subsection, the necessary steps to perform the training of an RBM by updating
its weights are described.

2.2 The Contrastive Divergence Algorithm

During training of a RBM[1], its weights wij are adjusted via Eq. (6):

W(t+1) = W(t) +∆W = W(t) + η
∂log(p(v))

∂wij
, (6)

where W represents the matrix of weights wij , ∆W is the adjustment for W at
iteration (t + 1) and η is known as the learning rate. This updating rule is an
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approximation to the maximum likelihood method, where the gradient is given
by:

∂log(p(v))

∂wij
= 〈vihj〉data − 〈vihj〉model, (7)

where vi represents a visible node, hj represents a hidden node and the angled
brackets represent the expected value with respect to either the distribution of
the data or the model. While computing the distribution with respect to the
data is straightforward, the expectation with respect to the model requires the
use of extended alternating Gibbs sampling between the visible and the hidden
units. The training algorithm developed by Hinton, and known as “Contrastive
Divergence” (CD) uses only n steps of Gibbs sampling (n = 1 works sufficiently
well) [6] . The pseudo-code for CD is shown in Algorithm 1.

Algorithm 1 Pseudo-code of the Contrastive Divergence algorithm

1: Set the values of the training units to a training vector (binary data is requiered).
2: Update the hidden units given the visible units: p(hi = 1|V) according to Eq. (3).
3: Update the visible units given the hidden units: p(vj = 1|H) according to Eq. (3).
4: Re-update the hidden units given the newly obtained values for the vissible units,

(redo step 2 using the new V).
5: Perform weight adjustment W(t+1) = W(t) +∆W with Eq. (6).
6: return W.

In order to demonstrate the benefits of performing pre-training on the feature
extraction module in a DBN, the classification performance of the network with
and without the pretraining stage is contrasted in Fig. 2. It can be observed that
from the very beginning of the fine-tuning stage, the pre-trained network rapidly
achieves a significantly lower error than the network without pre-training. After
epoch 10, the networks improve their performance very slowly or practically have
converged to their final performance. Applying the fine-tuning for many more
epochs does not produce any further improvement.

As can be appreciated, CD is a very simple method for unsupervised training
of an RBM. Nevertheless, it is an iterative method that requires a lot of data.
In this work we test the hypothesis of whether population-based metaheuristics
can perform better than CD. Furthermore, we intend to generate indications
about the most adequate metaheuristic to perform the training process of an
RBM. In this vein, stochastic algorithms which use descent directions are known
as well-performing methods in the context of convolutional neural networks [14].
Based on such evidence, we propose to use the Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES), which is a population based metaheuristic
that employs a probability distribution where the maximum-variance is oriented
towards the direction of steepest descent. In order to test our hypothesis and
our proposal, the performance of CD is contrasted against that of the CMA-ES
and against the Genetic Algorithm (GA), which is arguably the most widely
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Fig. 2. Effect of employing pre-training against random weight-initialization in the
classification performance.

used metaheuristic and, consequently, a suitable basis for comparison. These
evolutionary algorithms are described in the following subsection.

2.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are based on the principles of biological evolu-
tion. They evolve a population of candidate solutions (individuals), by applying
reproduction and variation operators on a selected set (parent set), this set is
selected with a bias to the best solutions. The intention is to produce fitter
offspring for the next generation. The offspring replace the current population,
usually, preserving the best solution through generations, this is called elitism.
The process is repeated until a stopping criterion is met. The EAs can be clas-
sified into different families, for instance: Evolution Strategies (ES) [5], Genetic
Algorithms [12] and Estimation of Distribution Algorithms (EDAs) [24], all of
them are evolutionary algorithms but each of them has a particular way of
working.

The Genetic Algorithm (GA) is arguably the most popular of the Evolu-
tionary Algorithms. Initially developed by Holland [8] and popularized through
the work of Goldberg [4], GAs are now widely applied in science and engi-
neering as adaptive algorithms for solving practical problems. The GA is also
a population-based technique inspired by natural selection and genetics. This
technique maintains a population of individuals called chromosomes and formed
by “genes” in some D-dimensional search space. Adaptation strategies (selection,
crossover and mutation) are used to make the individuals evolve in search for
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the global optimum. In this way a new population is created and the process is
repeated in a new generation. In GA, the selection operator chooses a pair of
chromosomes for crossover, combining some of the genes of each of the parents.
Only the best of the new chromosomes is passed on to the next generation
(elitism). The mutation alters a chromosome, creating a new one. The process
above is summarised in Algorithm 2.

Algorithm 2 Genetic Algorithm Pseudo-code

1: Initialize chromosome population.
2: Set Pr ← Probability of reproduction.
3: Set Pm ← Probability of mutation.
4: while stopCrit 6= true do
5: Evaluate the population.
6: Choose two parent chromosomes.
7: if Pr then
8: Apply the crossover operator.
9: end if

10: if Pm then
11: Apply the mutation operator.
12: end if
13: Accept the new solution if its fitness is lower.
14: end while
15: return Wl

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [5] uses
a multivariate normal distribution to search for the optimum, it is an algorithm
which, actually, shares characteristics of EAs and EDAs. In continuous domains,
ESs [3], usually, produce the offspring set by generating Normal deviates with
mean at a parent position, and a covariance matrix often adapted in two fashions:
1) by using evolutionary operators on the parameters which determine the size
and rotation of the covariance matrix, 2) by adapting the covariance matrix
using improvement directions. The first is named as the self-adapted-parameter
fashion while the second is the covariance matrix adaptation (CMA).

In the CMA, a set of parent solutions is used to determine the size, position
and orientation of a normal distribution used to sample the candidate solutions.
One of its most important characteristics is that the orientation of the multi-
variate normal model aligns the search to promising regions, in a kind of descent
path.

The CMA-ES pseudo-code is shown in Algorithm 3, steps 1-3 initialize the
multivariate Gaussian distribution and the algorithm parameters. In steps 5-
7, the new candidate solutions are generated from the multivariate Gaussian
distribution and evaluated on the objective function f . In step 9, the population
is sorted selecting the best solutions. The previous mean is stored in step 10, then,
the new mean, the isotropic path pσ, and the anisotropic path pc, are computed
in steps 11-13. The isotropic and anisotropic path include information about
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the historical direction of the search, which has been computed using the best
solutions, the first is a kind of covariance-normalized direction while the second
is an absolute direction. Lastly, in steps 14-15 the new covariance matrix is
computed, and the isotropic and anisotropic paths are used to modify it,in order
to guide the search toward the improvement directions, hence, it is expected
that the maximum variance direction has a large projection over the maximum
improvement direction. Steps 5-15 compose the main iteration of the CMA-ES,
these steps are repeated until a stopping criterion is met.

Algorithm 3 Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)
Pseudocode
1: Set λ←number of samples per iteration, at least two, generally > 4
2: Initialize m,σ,C = I, pσ = 0, pc = 0
3: t← 0
4: while stopCrit 6= true do
5: for i = 1 : λ do
6: xi ← N (m,σ2C)
7: Fi ← f(xi)
8: end for
9: x1...λ ← xs(1)...s(λ) with s(i) = argsort(f(1, . . . , λ), i)

10: m′ = m
11: m← update m(x1, . . . , xλ)
12: pσ ← update ps(pσ, σ

−1C−1/2(m−m′), ||pσ||)
13: pc ← update pc(pc, σ

−1(m−m′), ||pσ||)
14: C ← update C(C, pc, (x1 −m′)/σ, . . . , (xλ −m′)/σ)
15: σ ← update sigma(σ, . . . , ||pσ||)
16: end while
17: return x1

3 Methodology

In this work, we substitute the traditional method of performing the pre-training,
with evolutionary optimization algorithms, the CMA-ES and the well known GA,
for a direct comparison of their abilities to perform the pre-training of three
RBMs stacked together to form a DBN. The network pre-training is achieved
by minimizing the reconstruction error, Eq. (8). This proposal is validated on
the problem of MNIST digit recognition by training a Deep Belief Network,
following the methodology described by Hinton and Salakhutdinov [7] and is
also compared against the well known Genetic Algorithm (GA). All of these
techniques were described in Section 2.

The MNIST (Modified National Institute of Standards and Technology)
database is a moderately large database of handwritten digits, that has become
very popular in the field of machine learning and particularly, deep learning.
The database contains instances of digits, each in the form of an image of size
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Fig. 3. A sample of the MNIST handwritten digits.

28 × 28 pixels. There are 60,000 training images and 10,000 testing images in
the database (Fig. 3).

The problem of classification of MNIST digits consists of building a system
that automatically provides the true class of the images in the testing set. This
can be accomplished using a set of RBMs stacked one after the other, as explained
in Section 2.1, followed by a “completely connected” or “fully connected” (FC)
layer with ten neurons (one per digit class) that provide the predictions of
the system [20, 7, 19]. The set of RBMs are considered the feature extraction
module and are pre-trained using CD, an unsupervised method, and then the
whole network (i.e. including the FC layer) is fine-tuned using the supervised
method of gradient descent known as backpropagation. In this work we follow
the methodology described by Hinton and Salakhutdinov [7], and modify their
code, provided as Supporting Online Material where the authors employed the
conjugate gradient method as an algorithm for the fine-tuning of the network.

Hinton and Salakhutdinov defined the architecture of their network with five
layers of feature extraction of sizes: (28×28 = 784)×500×500×2000×10 (last
is the FC layer), this is illustrated in Fig. 4-a. The authors also used a training
procedure based on what is known as mini-batches, where the training dataset
is partitioned into relatively small subsets (the mini-batches) that are presented
to the system between weight updates in order to accelerate the training (a
more typical approach would be to perform an update of the network weights
after each individual instance). For reproducibility purposes, and given that they
obtained a competitive result corresponding to 1.2% test error, in this work the
architecture and hyper-parameters defined by Hinton and Salkhutdinov are used,
with one exception described below.

A population-based metaheuristic maintains a set of candidate solutions,
known as “individuals” for short, from which better solutions (or at least not-
worse than the current best) are produced. Each of the candidate solutions
is represented by a vector typically defined in the solution space; i.e., each
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Fig. 4. (a) Architecture used in Hinton and Salakhutdinov. (b) Architecture used in
this work.

individual is represented by a vector with as many elements as the dimensionality
of the solution space, D. In this work, the solutions that is looked for is a
series of weight matrices and bias vectors, one matrix at a time. Each of these
matrices contains several thousand elements, for instance, weight matrix W1 in
Fig. 4-a contains 784 × 500 = 392, 000 elements. This is to say that in order to
obtain the optimal W1, a population of individuals is to be maintained, each
individual of size 392,000 elements. The CMA-ES algorithm described in Section
2.3 involves the computation and diagonalization of a covariance matrix of size
D×D, and this becomes prohibitively large (the data does not fit in memory) for
D = 392, 000. Although some alternatives (such as hashing algorithms [25]) exist
for large-scale and high-dimensional tasks, in this work we use a simpler approach
in order to provide a straightforward proof-of-concept of our contribution that
can work with other similar problems in smaller dimensions: resizing the training
data. By resizing the images in the MNIST dataset to one fourth of their original
size, and consequently the dimensions of the network to those illustrated in
Fig. 4-b, we found that it is possible for the CMA-ES algorithm to handle the
problem directly. Thus, the final architecture used in the experiments is of size:
49 × 30 × 30 × 120 × 10. The pseudocode of our experimental methodology is
provided in Algorithm 4.

4 Experimental Results

In this section we report the results of performing the pre-training of the feature
extraction module for the classification of MNIST digits, comparing the typical
training of RBMs against using metaheuristics, in this case the CMA-ES algo-
rithm and the GA. The main two elements for metaheuristics to function are the
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Algorithm 4 Methodology for training a DBN

1: Set J ← input layer size,K ← hidden layer size.
2: For CD: Set α← momentum, η ← learning rate.
3: For CMA-ES: Set M ← population size.
4: For GA: Set M ← population size.
5: Split dataset, X, into mini-batches, xi.
6: while stopCrit 6= true do
7: for i = 1 : N do
8: if CD then
9: Compute Ei with W

(t)
l .

10: Compute ∆W, Eq. (7).

11: Update W
(t+1)
l = W

(t)
l +∆W, Eq. (6).

12: else
13: if CMA-ES then
14: Create population P(t) = {W(0)

l ,W
(1)
l , . . . ,W

(M)
l }.

15: Compute Ei with P(t).
16: Update population with Algorithm 3.
17: end if
18: else
19: if GA then
20: Create population P(t) = {W(0)

l ,W
(1)
l , . . . ,W

(M)
l }.

21: Compute Ei with P(t).
22: Update population with Algorithm 2.
23: end if
24: end if
25: end for
26: Compute epoch error: E =

∑
i
Ei.

27: end while
28: return Wl

shape of an individual candidate solution and a fitness function to be optimized
(typically, minimized). In this work, the candidate solutions are defined as a
concatenation of the weight matrix of the i-th RBM, Wi (flattened), the visible
layer biases, bi, and the hidden layer biases, bi. All of these are defined as real
values. The fitness function used is the reconstruction error, which is the same
function guiding the CD algorithm. To compute the reconstruction error of one
RBM, input data is given to the RBM, the activation of the hidden layer is
computed using Eqs. (2) and (3). Then the reconstruction, ṽ is computed using
the same equations, but taking the hidden layer as the input and the visible
layer as the output. Thus, the reconstruction error is defined as:

E =
∑
j

(vj − ṽj)2. (8)

For each of the RBMs, the CD algorithm, the CMA-ES and the GA were
executed for 50 iterations, so that the total amount of iterations allocated to
train the feature extraction module is 150. The reconstruction error for each
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iteration was recorded. Since the iterations coincide with the presentation of all
the instances of the training data, they are referred to as “epochs”.

The control parameters used in the experiments for CD, CMA-ES and GA
are reported in Table 1. Notice that three values are reported for the number
of visible units in the visible layer, Nvis, and the number of units in the hidden
layer, Nhid. The three values correspond to the three RBMs that compose our
system and that are trained sequentially one after another.

Table 1. Control parameters used for the CD, CMA-ES and GA.

Contrastive Divergence

Parameter Value

Nvis {49, 30, 30}
Nhid {30, 30, 120}

Initial Population, W N (0, 0.1)
Initial Population, biases zeros

Learning rate η = 0.1
Initial Momentum, αI 0.5

Momentum α 0.9

CMA-ES

Parameter Value

Problem dimension, D Nvis ×Nhid +Nvis +Nhid
Initialization method N (0, 0.5)

Population size, λ 4 + b3 log(D)c
Recombination points λ/2

Genetic Algorithm

Parameter Value

Problem dimension, D Nvis ×Nhid +Nvis +Nhid
Initial Population N (0, σl) for each layer l

Standard Deviation σ1 = 0.5, σ2 = σ3 = 0.1
Population size, λ γl(4 + b3 log(D)c),

γ1 = 15, γ2 = 3, γ3 = 3

The experiment was repeated 30 times and the average result is shown in
Fig. 5. The plot shows the reconstruction error obtained by CD (continuous
line), CMA-ES (long-dashed line) and the GA (short-dashed line). Vertical bars
along the curves are used to show the standard deviation over the 30 trials.

It can be observed that CD exhibits a much smaller variability than CMA-ES.
On the other hand, CMA-ES achieves significantly smaller error for the first
two RBMs trained. The GA exhibits a much larger variability than CD and
comparable to that of CMA-ES, except for the final portion of the epochs, where
the population of CMA-ES converges but the one of GA does not. In the end
(epoch 150) the mean performance of GA is within a standard deviation of the
mean performance of CMA-ES, but in general CMA-ES achieves the lowest error
significantly faster than GA; at epochs 85-90, CMA-ES has reached the lowest
error recorded. In particular, for the first RBM, GA requires many more epochs
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Fig. 5. Error plots comparing CD against CMA-ES and GA.

to significantly reduce the error level, so much so that the beginning of the curve
lies outside of the figure. In fact, after 50 epochs one can observe that the curve
of the Genetic Algorithm still points significantly downwards, indicating that
the GA still has potential to improve the weight optimization beyond the 50
epochs.

Regarding other aspects of the algorithms, it must be noted that in this
work the same scheme of training via mini-batches was used for both training
strategies. According to this scheme, a training epoch is completed when the
network is presented with all of the training data, one mini-batch at a time.
While this approach is most beneficial for the Contrastive Divergence algorithm,
it may not be the best way to use the training data to guide the CMA-ES and GA
algorithms. For instance, one can think of employing a randomized sample of the
training data to be used in the computation of an estimate of the reconstruction
error, and use that estimate to guide the evolution in these algorithms. This
would eliminate a considerably part of the computational cost incurred in having
to evaluate all the individuals in the CMA-ES / GA population on all of the
training data just to guide the exploration of the solution space. Instead of
adjusting the training scheme to benefit each of the algorithms, in this work we
employed the same training scheme for both algorithms for the sake of a fair
comparison.
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5 Conclusion and Future Work

In this work, the proposal of using metaheuristics to perform the pre-training of
the feature extraction module in a DBN was put forward and tested using the
CMA-ES, which is a population-based metaheuristic. DBNs were pre-trained for
the problem of handwritten digit recognition using the MNIST dataset, and their
performance was measured by the reconstruction error of the RBMs included in
the feature extraction portion of the DBN. The performance of the CMA-ES
was compared against that of CD and also against that of the GA. Our results
show that CMA-ES performs the best among these algorithms and validate our
hypothesis regarding the suitability of CMA-ES to successfully approximate the
optimal weights of the DBN. Nevertheless, we have observed that the success of
the algorithm strongly depends on the problem dimension. This becomes evident
in Fig. 5 where CMA-ES outperforms the other two methods up to the beginning
of the third RBM, where it completely loses its advantage and struggles to come
back in track. The reason behind this is that the third RBM contains the most
units and therefore substantially more weights between its layers. This has a
particularly detrimental effect on the CMA-ES algorithm.

It should be noted that in this work our interest was to analyse the perfor-
mance of metaheuristic techniques for the pre-training of the different RBMs in
a DBN designed for handwritten digit recognition but not to observe the end
result. This is because the set of stacked RBMs should undergo a second training
stage after the pre-training (known as fine-tuning), to improve the classification
performance. This second training process is very efficient and may obscure the
existing differences between the pre-training achieved by each of the compared
techniques. In a future work we will study in detail the effect of the pre-training
on the convergence of the fine-tuning step.

As a general conclusion, we have determined that metaheuristics (in partic-
ular the CMA-ES), are competitive methods for pre-training a DBN using the
reconstruction error. However, metaheuristics are quite demanding in terms of
the computational resources (such as memory, operations and objective function
evaluations) required to perform the optimization. This drawback are inherit to
both metaheuristics tested, but not in the same scale. The CMA-ES requires
memory of the order O(n2) for storing a covariance matrix, in consequence, the
size (dimensionality) of the problems that can be tackled by this algorithm are
bounded by this computational resource. This disadvantage forced us to apply a
scaling to the handwritten digit images in order to reduce their dimensionality.
Another disadvantage of employing CMA-ES (and any other population-based
algorithm) is the cost of evaluating all the candidate solutions in the population.

In this regard, we can readily identify two main issues to investigate in future
work: first, to identify other metaheuristics with a similar or better performance
than CMA-ES and with lesser complexity and computational requirements.
Second, to employ a different training scheme, more suitable to the particular
requirements of the selected metaheuristics (instead of being tailored for CD). In
any case, it can be concluded that the combination of metaheuristics and deep
learning methods is a promissory line of research.
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